The search session has expired. Please query the service again.
We offer a complete answer to the following question on the growth of sumsets in commutative groups. Let h be a positive integer and be finite sets in a commutative group. We bound from above in terms of |A|, |A + B₁|, ..., and h. Extremal examples, which demonstrate that the bound is asymptotically sharp in all parameters, are furthermore provided.
Given an additively written abelian group G and a set X ⊆ G, we let (X) denote the monoid of zero-sum sequences over X and (X) the Davenport constant of (X), namely the supremum of the positive integers n for which there exists a sequence x₁⋯xₙ in (X) such that for each non-empty proper subset I of 1,...,n. In this paper, we mainly investigate the case when G is a power of ℤ and X is a box (i.e., a product of intervals of G). Some mixed sets (e.g., the product of a group by a box) are studied...
Let H be a Krull monoid with class group G. Then every nonunit a ∈ H can be written as a finite product of atoms, say . The set (a) of all possible factorization lengths k is called the set of lengths of a. If G is finite, then there is a constant M ∈ ℕ such that all sets of lengths are almost arithmetical multiprogressions with bound M and with difference d ∈ Δ*(H), where Δ*(H) denotes the set of minimal distances of H. We show that max Δ*(H) ≤ maxexp(G)-2,(G)-1 and that equality holds if every...
Currently displaying 1 –
4 of
4