Distribution de la constante d'Hermite et du plus court vecteur dans les réseaux de dimension deux
En utilisant la géométrie du demi-plan de Poincaré et des familles de disques classiques - disques de Ford, disques de Farey - nous décrivons les domaines de niveau associés à la constante d'Hermite et au plus court vecteur d'un réseau. Nous en déduisons une évaluation très précise des fonctions de répartition correspondantes, en particulier au voisinage de l'origine.