Existence of rational points on smooth projective varieties
We generalize a question of Büchi: Let R be an integral domain, C a subring and k ≥ 2 an integer. Is there an algorithm to decide the solvability in R of any given system of polynomial equations, each of which is linear in the kth powers of the unknowns, with coefficients in C? We state a number-theoretical problem, depending on k, a positive answer to which would imply a negative answer to the question for R = C = ℤ. We reduce a negative answer for k = 2 and for...
Suppose is a set of non-negative integers with upper Banach density (see definition below) and the upper Banach density of is less than . We characterize the structure of by showing the following: There is a positive integer and a set , which is the union of arithmetic sequences [We call a set of the form an arithmetic sequence of difference and call a set of the form an arithmetic progression of difference . So an arithmetic progression is finite and an arithmetic sequence...