Displaying 21 – 40 of 63

Showing per page

Extensions of Büchi's problem: Questions of decidability for addition and kth powers

Thanases Pheidas, Xavier Vidaux (2005)

Fundamenta Mathematicae

We generalize a question of Büchi: Let R be an integral domain, C a subring and k ≥ 2 an integer. Is there an algorithm to decide the solvability in R of any given system of polynomial equations, each of which is linear in the kth powers of the unknowns, with coefficients in C? We state a number-theoretical problem, depending on k, a positive answer to which would imply a negative answer to the question for R = C = ℤ. We reduce a negative answer for k = 2 and for...

Kneser’s theorem for upper Banach density

Prerna Bihani, Renling Jin (2006)

Journal de Théorie des Nombres de Bordeaux

Suppose A is a set of non-negative integers with upper Banach density α (see definition below) and the upper Banach density of A + A is less than 2 α . We characterize the structure of A + A by showing the following: There is a positive integer g and a set W , which is the union of 2 α g - 1 arithmetic sequences [We call a set of the form a + d an arithmetic sequence of difference d and call a set of the form { a , a + d , a + 2 d , ... , a + k d } an arithmetic progression of difference d . So an arithmetic progression is finite and an arithmetic sequence...

Currently displaying 21 – 40 of 63