Finitely generated commutative division semirings
The tropical semifield, i.e., the real numbers enhanced by the operations of addition and maximum, serves as a base of tropical mathematics. Addition is an abelian group operation, whereas the maximum defines an idempotent semigroup structure. We address the question of the geometry of idempotent semigroups, in particular, tropical algebraic sets carrying the structure of a commutative idempotent semigroup. We show that commutative idempotent semigroups are contractible, that systems of tropical...
Parasemifields (i.e., commutative semirings whose multiplicative semigroups are groups) are considered in more detail. We show that if a parasemifield contains as a subparasemifield and is generated by , , as a semiring, then is (as a semiring) not finitely generated.