The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let k be a field. We describe all linear derivations d of the polynomial algebra k[x₁,...,xₘ] such that the algebra of constants with respect to d is generated by linear forms: (a) over k in the case of char k = 0, (b) over in the case of char k = p > 0.
We give a description of all local derivations (in the Kadison sense) in the polynomial ring in one variable in characteristic two. Moreover, we describe all local derivations in the power series ring in one variable in any characteristic.
We give a new proof of Miyanishi's theorem on the classification of the additive group scheme actions on the affine plane.
We prove that every locally nilpotent monomial k-derivation of k[X₁,...,Xₙ] is triangular, whenever k is a ring of characteristic zero. A method of testing monomial k-derivations for local nilpotency is also presented.
Currently displaying 1 –
4 of
4