Page 1

Displaying 1 – 2 of 2

Showing per page

Images of locally nilpotent derivations of bivariate polynomial algebras over a domain

Xiaosong Sun, Beini Wang (2024)

Czechoslovak Mathematical Journal

We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let R be a domain containing a field of characteristic zero. We prove that, when R is a one-dimensional unique factorization domain, the image of any locally nilpotent R -derivation of the bivariate polynomial algebra R [ x , y ] is a Mathieu-Zhao subspace. Moreover, we prove that, when R is a Dedekind domain, the image of a locally nilpotent R -derivation of R [ x , y ] with some additional conditions...

Irreducible Jacobian derivations in positive characteristic

Piotr Jędrzejewicz (2014)

Open Mathematics

We prove that an irreducible polynomial derivation in positive characteristic is a Jacobian derivation if and only if there exists an (n-1)-element p-basis of its ring of constants. In the case of two variables we characterize these derivations in terms of their divergence and some nontrivial constants.

Currently displaying 1 – 2 of 2

Page 1