Displaying 61 – 80 of 211

Showing per page

Inertial subrings of a locally finite algebra

Yousef Alkhamees, Surjeet Singh (2002)

Colloquium Mathematicae

I. S. Cohen proved that any commutative local noetherian ring R that is J(R)-adic complete admits a coefficient subring. Analogous to the concept of a coefficient subring is the concept of an inertial subring of an algebra A over a commutative ring K. In case K is a Hensel ring and the module A K is finitely generated, under some additional conditions, as proved by Azumaya, A admits an inertial subring. In this paper the question of existence of an inertial subring in a locally finite algebra is discussed....

Non-commutative separability and group actions.

Ricardo Alfaro (1992)

Publicacions Matemàtiques

We give conditions for the skew group ring S * G to be strongly separable and H-separable over the ring S. In particular we show that the H-separability is equivalent to S being central Galois extension. We also look into the H-separability of the ring S over the fixed subring R under a faithful action of a group G. We show that such a chain: S * G H-separable over S and S H-separable over R cannot occur, and that the centralizer of R in S is an Azumaya algebra in the presence of a central element...

Currently displaying 61 – 80 of 211