Displaying 41 – 60 of 66

Showing per page

Rings with zero intersection property on annihilators: Zip rings.

Carl Faith (1989)

Publicacions Matemàtiques

Zelmanowitz [12] introduced the concept of ring, which we call right zip rings, with the defining properties below, which are equivalent:(ZIP 1) If the right anihilator X⊥ of a subset X of R is zero, then X1⊥ = 0 for a finite subset X1 ⊆ X.(ZIP 2) If L is a left ideal and if L⊥ = 0, then L1⊥ = 0 for a finitely generated left ideal L1 ⊆ L.In [12], Zelmanowitz noted that any ring R satisfying the d.c.c. on anihilator right ideals (= dcc ⊥) is a right zip ring, and hence, so is any subring of R. He...

Some results on quasi-Frobenius rings

Zhanmin Zhu (2017)

Commentationes Mathematicae Universitatis Carolinae

We give some new characterizations of quasi-Frobenius rings by the generalized injectivity of rings. Some characterizations give affirmative answers to some open questions about quasi-Frobenius rings; and some characterizations improve some results on quasi-Frobenius rings.

Split-null extensions of strongly right bounded rings.

Gary F. Birkenmeier (1990)

Publicacions Matemàtiques

A ring is said to be strongly right bounded if every nonzero right ideal contains a nonzero ideal. In this paper strongly right bounded rings are characterized, conditions are determined which ensure that the split-null (or trivial) extension of a ring is strongly right bounded, and we characterize strongly right bounded right quasi-continuous split-null extensions of a left faithful ideal over a semiprime ring. This last result partially generalizes a result of C. Faith concerning split-null extensions...

Strongly graded left FTF rings.

José Gómez, Blas Torrecillas (1992)

Publicacions Matemàtiques

An associated ring R with identity is said to be a left FTF ring when the class of the submodules of flat left R-modules is closed under injective hulls and direct products. We prove (Theorem 3.5) that a strongly graded ring R by a locally finite group G is FTF if and only if Re is left FTF, where e is a neutral element of G. This provides new examples of left FTF rings. Some consequences of this Theorem are given.

Currently displaying 41 – 60 of 66