A general theory of Fountain-Gould quotient rings
Let , be an algebraic lattice. It is well-known that with its topological structure is topologically scattered if and only if is ordered scattered with respect to its algebraic structure. In this note we prove that, if is a distributive algebraic lattice in which every element is the infimum of finitely many primes, then has Krull-dimension if and only if has derived dimension. We also prove the same result for , the set of all prime elements of . Hence the dimensions on the lattice...