On a class of near-rings sum of near-fields
Page 1 Next
Silvia Pellegrini Manara (1984)
Acta Universitatis Carolinae. Mathematica et Physica
Vučić Dašić (1987)
Publications de l'Institut Mathématique
Yi Chen (1980)
Aequationes mathematicae
Samman, Mohammad (2003)
Mathematica Pannonica
H.J. Weinert (1978)
Semigroup forum
Abbasi, S.J., Meldrum, J.D.P. (1991)
Mathematica Pannonica
Öznur Golbaşi, Neşet Aydin (2007)
Archivum Mathematicum
Let be a -prime left near-ring with multiplicative center , a -derivation on is defined to be an additive endomorphism satisfying the product rule for all , where and are automorphisms of . A nonempty subset of will be called a semigroup right ideal (resp. semigroup left ideal) if (resp. ) and if is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let be a
Chowdhury, K.Ch., Saikia, Helen K. (1997)
Mathematica Pannonica
Markku Niemenmaa (1984)
Monatshefte für Mathematik
Khan, M.A., Khan, M.S. (2006)
Mathematica Pannonica
Argaç, Nurcan (1997)
International Journal of Mathematics and Mathematical Sciences
Bell, Howard E. (2008)
International Journal of Mathematics and Mathematical Sciences
Feigelstock, Shalom (1983/1984)
Portugaliae mathematica
Vučić Dašić (1985)
Publications de l'Institut Mathématique
U. Hebisch (1984)
Semigroup forum
Dheena, P., Sivakumar, D. (2004)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Khan, Moharram A. (2000)
International Journal of Mathematics and Mathematical Sciences
Akram, Muhammad (2007)
International Journal of Mathematics and Mathematical Sciences
Silvia Pellegrini Manara (1984)
Commentationes Mathematicae Universitatis Carolinae
Steve Ligh (1972)
Monatshefte für Mathematik
Page 1 Next