Holomorphic automorphisms and collective compactness in J*-algebras of operator
Let G be the Banach-Lie group of all holomorphic automorphisms of the open unit ball in a J*-algebra of operators. Let be the family of all collectively compact subsets W contained in . We show that the subgroup F ⊂ G of all those g ∈ G that preserve the family is a closed Lie subgroup of G and characterize its Banach-Lie algebra. We make a detailed study of F when is a Cartan factor.