A note on the lattice definability of Bernstein algebras.
We prove that the variety of Lie algebras arising from splicing operation coincides with the variety CM of centreby-metabelian Lie algebras. Using these Lie algebras we find the minimal dimension algebras generated the variety CM and the variety of its associative envelope algebras. We study the splicing n-ary operation. We show that all n-ary (n > 2) commutator algebras arising from this operation are nilpotent of index 3. We investigate the generalization of the splicing n-ary operation, and...
In this paper we investigate the structure and representation of n-ary algebras arising from DNA recombination, where n is a number of DNA segments participating in recombination. Our methods involve a generalization of the Jordan formalization of observables in quantum mechanics in n-ary splicing algebras. It is proved that every identity satisfied by n-ary DNA recombination, with no restriction on the degree, is a consequence of n-ary commutativity and a single n-ary identity of the degree 3n-2....