Homotopy-theoretic aspects of 2-monads.
Hopf-Galois extensions for monoidal Hom-Hopf algebras are investigated. As the main result, Schneider's affineness theorem in the case of monoidal Hom-Hopf algebras is shown in terms of total integrals and Hopf-Galois extensions. In addition, we obtain an affineness criterion for relative Hom-Hopf modules which is associated with faithfully flat Hopf-Galois extensions of monoidal Hom-Hopf algebras.