Solvable Normal Subgroups and Nilpotent Ideals in Matrix Rings.
In this paper, we determine all the normal forms of Hermitian matrices over finite group rings , where , is a commutative -group with order . Furthermore, using the normal forms of Hermitian matrices, we study the structure of unitary group over through investigating its BN-pair and order. As an application, we construct a Cartesian authentication code and compute its size parameters.