Exponentiation without associativity
In this work, we communicate the topic of complex Lie algebroids based on the extended fractional calculus of variations in the complex plane. The complexified Euler-Lagrange geodesics and Wong's fractional equations are derived. Many interesting consequences are explored.
We introduce the notion of fundamental groupoid of a digraph and prove its basic properties. In particular, we obtain a product theorem and an analogue of the Van Kampen theorem. Considering the category of (undirected) graphs as the full subcategory of digraphs, we transfer the results to the category of graphs. As a corollary we obtain the corresponding results for the fundamental groups of digraphs and graphs. We give an application to graph coloring.
We introduce a new notion of covering projection E → X of a topological space X which reduces to the usual notion if X is locally connected. We use locally constant presheaves and covering reduced sieves to find a pro-groupoid π crs (X) and an induced category pro (π crs (X), Sets) such that for any topological space X the category of covering projections and transformations of X is equivalent to the category pro (π crs (X), Sets). We also prove that the latter category is equivalent to pro (π CX,...