On a subclass of context-free groups
The graph product is an operator mixing direct and free products. It is already known that free products and direct products of automatic monoids are automatic. The main aim of this paper is to prove that graph products of automatic monoids of finite geometric type are still automatic. A similar result for prefix-automatic monoids is established.
The graph product is an operator mixing direct and free products. It is already known that free products and direct products of automatic monoids are automatic. The main aim of this paper is to prove that graph products of automatic monoids of finite geometric type are still automatic. A similar result for prefix-automatic monoids is established.
This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids....
This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids. In 1991, Klarner, Birget and Satterfield proved the undecidability...