The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Cardinal characteristics of the ideal of Haar null sets

Taras O. Banakh (2004)

Commentationes Mathematicae Universitatis Carolinae

We calculate the cardinal characteristics of the σ -ideal 𝒩 ( G ) of Haar null subsets of a Polish non-locally compact group G with invariant metric and show that cov ( 𝒩 ( G ) ) 𝔟 max { 𝔡 , non ( 𝒩 ) } non ( 𝒩 ( G ) ) cof ( 𝒩 ( G ) ) > min { 𝔡 , non ( 𝒩 ) } . If G = n 0 G n is the product of abelian locally compact groups G n , then add ( 𝒩 ( G ) ) = add ( 𝒩 ) , cov ( 𝒩 ( G ) ) = min { 𝔟 , cov ( 𝒩 ) } , non ( 𝒩 ( G ) ) = max { 𝔡 , non ( 𝒩 ) } and cof ( 𝒩 ( G ) ) cof ( 𝒩 ) , where 𝒩 is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that cof ( 𝒩 ( G ) ) > 2 0 and hence G contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of G . This gives a negative (consistent) answer to a question of...

Convexity and almost convexity in groups

Witold Jarczyk (2013)

Banach Center Publications

We give a review of results proved and published mostly in recent years, concerning real-valued convex functions as well as almost convex functions defined on a (not necessarily convex) subset of a group. Analogues of such classical results as the theorems of Jensen, Bernstein-Doetsch, Blumberg-Sierpiński, Ostrowski, and Mehdi are presented. A version of the Hahn-Banach theorem with a convex control function is proved, too. We also study some questions specific for the group setting, for instance...

Currently displaying 1 – 4 of 4

Page 1