Displaying 141 – 160 of 353

Showing per page

Longer chains of idempotents in βG

Neil Hindman, Dona Strauss, Yevhen Zelenyuk (2013)

Fundamenta Mathematicae

Given idempotents e and f in a semigroup, e ≤ f if and only if e = fe = ef. We show that if G is a countable discrete group, p is a right cancelable element of G* = βG∖G, and λ is a countable ordinal, then there is a strictly decreasing chain q σ σ < λ of idempotents in C p , the smallest compact subsemigroup of G* with p as a member. We also show that if S is any infinite subsemigroup of a countable group, then any nonminimal idempotent in S* is the largest element of such a strictly decreasing chain of idempotents....

Currently displaying 141 – 160 of 353