Previous Page 3

Displaying 41 – 50 of 50

Showing per page

Some Coefficient Estimates for Polynomials on the Unit Interval

Qazi, M. A., Rahman, Q. I. (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 26C05, 26C10, 30A12, 30D15, 42A05, 42C05.In this paper we present some inequalities about the moduli of the coefficients of polynomials of the form f (x) : = еn = 0nan xn, where a0, ј, an О C. They can be seen as generalizations, refinements or analogues of the famous inequality of P. L. Chebyshev, according to which |an| Ј 2n-1 if | еn = 0n an xn | Ј 1 for -1 Ј x Ј 1.

The sum of periodic functions

Stefano Mortola, Roberto Peirone (1999)

Bollettino dell'Unione Matematica Italiana

Si prova che ogni polinomio in una variabile reale di grado n è somma di n + 1 funzioni periodiche, ovviamente non tutte continue, e che ci sono funzioni di una variabile reale che non sono somma di un numero finito di funzioni periodiche.

Currently displaying 41 – 50 of 50

Previous Page 3