The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 17 of 17

Showing per page

Moments of vector measures and Pettis integrable functions

Miloslav Duchoň (2011)

Czechoslovak Mathematical Journal

Conditions, under which the elements of a locally convex vector space are the moments of a regular vector-valued measure and of a Pettis integrable function, both with values in a locally convex vector space, are investigated.

Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions

Fabio Berra (2022)

Czechoslovak Mathematical Journal

We give a quantitative characterization of the pairs of weights ( w , v ) for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak ( p , p ) type inequality for 1 p < . More precisely, given any measurable set E 0 , the estimate w ( { x n : M + , d ( 𝒳 E 0 ) ( x ) > t } ) C [ ( w , v ) ] A p + , d ( ) p t p v ( E 0 ) holds if and only if the pair ( w , v ) belongs to A p + , d ( ) , that is, | E | | Q | [ ( w , v ) ] A p + , d ( ) v ( E ) w ( Q ) 1 / p for every dyadic cube Q and every measurable set E Q + . The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the non-dyadic...

Sobre les variacions de valoracions vectorials.

María Congost Iglesias (1981)

Stochastica

In this note we define three variations for a vector valued function defined on an inf-semilattice, all of them generalizations of those considered for vector valued set-functions. We are interested in additive and finiteness properties of such variations.

Currently displaying 1 – 17 of 17

Page 1