On certain solutions of the diophantine equation x-y = p(z)
In the paper we study the existence of nonzero positive invariant elements for positive operators in Riesz spaces. The class of Riesz spaces for which the results are valid is large enough to contain all the Banach lattices with order continuous norms. All the results obtained in earlier works deal with positive operators in KB-spaces and in many of them the approach is based upon the use of Banach limits. The methods created for KB-spaces cannot be extended to our more general setting; that is...
We discuss the classification up to orbit equivalence of inclusions 𝑆 ⊂ ℛ of measured ergodic discrete hyperfinite equivalence relations. In the case of type III relations, the orbit equivalence classes of such inclusions of finite index are completely classified in terms of triplets consisting of a transitive permutation group G on a finite set (whose cardinality is the index of 𝑆 ⊂ ℛ), an ergodic nonsingular ℝ-flow V and a homomorphism of G to the centralizer of V.