Über analytische Funktionen, die im Komplement kleiner Kreisscheiben groß sind.
Indépendance linéaire de où sont des fonctions holomorphes sur avec non constante pour .
Let f and g be entire functions, n, k and m be positive integers, and λ, μ be complex numbers with |λ| + |μ| ≠ 0. We prove that must have infinitely many fixed points if n ≥ k + 2; furthermore, if and have the same fixed points with the same multiplicities, then either f ≡ cg for a constant c, or f and g assume certain forms provided that n > 2k + m* + 4, where m* is an integer that depends only on λ.