On the angular boundedness of Bloch functions.
This paper contains a method to associate to each function f in the little Bloch space another function f* in the Bloch space in such way that f has a finite angular limit where f* is radially bounded. The idea of the method comes from the theory of lacunary series. An application to conformal mapping from the unit disc to asymptotically Jordan domains is given.
By using an extension of the spherical derivative introduced by Lappan, we obtain some results on normal functions and normal families, which extend Lappan's five-point theorems and Marty's criterion, and improve some previous results due to Li and Xie, and the author. Also, another proof of Lappan's theorem is given.
Définitions et propriétés des notions nouvelles de demi-plans, droites et abscisses de régularité et de suprarégularité pour une famille de germes dirichlétiens, par rapport à un support commun de référence. Conditions suffisantes (du type de Landau-Fekete) d’égalité de ces abscisses et expressions algorithmiques de majorants. Relations de dépendance (du type de V. Bernstein) entre les différentes abscisses considérées d’une famille donnée. Extensions de résultats classiques relatifs à la famille...
Aleksandrov, Anderson and Nicolau have found examples of inner functions that are in the little Bloch space with a specific rate of convergence to zero. As a corollary they obtain positive singular measures defined in the boundary of the unit disc that are simultaneously symmetric and Kahane. Nevertheless their construction is very indirect. We give an explicit example of such measures by means of a martingale argument.