The search session has expired. Please query the service again.
Let φ and ψ be analytic self-maps of 𝔻. Using the pseudo-hyperbolic distance ρ(φ,ψ), we completely characterize the boundedness and compactness of the difference of generalized weighted composition operators between growth spaces.
We establish local-in-time smoothing of a simple model nonlinear parabolic PDE in a scale of weighted Bergman spaces on a strip provided the weights are not too singular. This constitutes a very strong smoothing property since an immediate consequence is that the PDE can "push away" an algebraic-type complex singularity provided that the order of the singularity is small enough.
Currently displaying 1 –
10 of
10