Mean growth and Taylor coefficients of some topological algebras of analytic functions
We give new characterizations of the analytic Besov spaces Bp on the unit ball B of Cn in terms of oscillations and integral means over some Euclidian balls contained in B.
Poletsky-Stessin Hardy (PS-Hardy) spaces are the natural generalizations of classical Hardy spaces of the unit disc to general bounded, hyperconvex domains. On a bounded hyperconvex domain Ω, the PS-Hardy space is generated by a continuous, negative, plurisubharmonic exhaustion function u of the domain. Poletsky and Stessin considered the general properties of these spaces and mainly concentrated on the spaces where the Monge-Ampère measure has compact support for the associated exhaustion...
We show that T is a surjective multiplicative (but not necessarily linear) isometry from the Smirnov class on the open unit disk, the ball, or the polydisk onto itself, if and only if there exists a holomorphic automorphism Φ such that T(f)=f ○ Φ for every class element f or T(f) = for every class element f, where the automorphism Φ is a unitary transformation in the case of the ball and Φ(z 1, ..., z n) = for |λ j| = 1, 1 ≤ j ≤ n, and (i 1; ..., i n)is some permutation of the integers from...
In 1966 de Branges and Rovnyak introduced a concept of complementation associated to a contraction between Hilbert spaces that generalizes the classical concept of orthogonal complement. When applied to Toeplitz operators on the Hardy space of the disc, H2, this notion turned out to be the starting point of a beautiful subject, with many applications to function theory. The work has been in constant progress for the last few years. We study here the multipliers of some de Branges-Rovnyak spaces...