The search session has expired. Please query the service again.
We show that under minimal assumptions, the intrinsic metric induced by a strongly local Dirichlet form induces a length space. The main input is a dual characterization of length spaces in terms of the property that the 1-Lipschitz functions form a sheaf.
We consider a complete metric space equipped with a doubling measure and a weak Poincaré inequality. We prove that for all p-superharmonic functions there exists an upper gradient that is integrable on H-chain sets with a positive exponent.
With the help of recent adjacent dyadic constructions by Hytönen and the author, we give an alternative proof of results of Lechner, Müller and Passenbrunner about the -boundedness of shift operators acting on functions where 1 < p < ∞, X is a metric space and E is a UMD space.
Currently displaying 1 –
4 of
4