Page 1

Displaying 1 – 2 of 2

Showing per page

Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces

Heikki Hakkarainen, Juha Kinnunen, Panu Lahti, Pekka Lehtelä (2016)

Analysis and Geometry in Metric Spaces

This article studies an integral representation of functionals of linear growth on metric measure spaces with a doubling measure and a Poincaré inequality. Such a functional is defined via relaxation, and it defines a Radon measure on the space. For the singular part of the functional, we get the expected integral representation with respect to the variation measure. A new feature is that in the representation for the absolutely continuous part, a constant appears already in the weighted Euclidean...

Resistance Conditions and Applications

Juha Kinnunen, Pilar Silvestre (2013)

Analysis and Geometry in Metric Spaces

This paper studies analytic aspects of so-called resistance conditions on metric measure spaces with a doubling measure. These conditions are weaker than the usually assumed Poincaré inequality, but however, they are sufficiently strong to imply several useful results in analysis on metric measure spaces. We show that under a perimeter resistance condition, the capacity of order one and the Hausdorff content of codimension one are comparable. Moreover, we have connections to the Sobolev inequality...

Currently displaying 1 – 2 of 2

Page 1