Page 1

Displaying 1 – 11 of 11

Showing per page

Majorantes surharmoniques minimales d'une fonction continue

Jean-Jacques Moreau (1971)

Annales de l'institut Fourier

Soit Ω , ouvert de R n et f : Ω R , continue. On dit qu’une majorante surharmonique de f dans Ω est minimale si cette majorante surharmonique est harmonique dans l’ensemble (ouvert) où elle diffère de f . Beaucoup de propriétés de ces fonctions sont semblables à celles des fonctions harmoniques 0 (lesquelles correspondent à f = 0 ) ; par exemple la famille entière est uniformément équicontinue dans chaque partie compacte de Ω , relativement à la structure uniforme de R . On traite le problème de Dirichlet : détermination...

Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales

Adam Osękowski (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Assume that u, v are conjugate harmonic functions on the unit disc of ℂ, normalized so that u(0) = v(0) = 0. Let u*, |v|* stand for the one- and two-sided Brownian maxima of u and v, respectively. The paper contains the proof of the sharp weak-type estimate ℙ(|v|* ≥ 1)≤ (1 + 1/3² + 1/5² + 1/7² + ...)/(1 - 1/3² + 1/5² - 1/7² + ...) 𝔼u*. Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined...

Mean value densities for temperatures

N. Suzuki, N. A. Watson (2003)

Colloquium Mathematicae

A positive measurable function K on a domain D in n + 1 is called a mean value density for temperatures if u ( 0 , 0 ) = D K ( x , t ) u ( x , t ) d x d t for all temperatures u on D̅. We construct such a density for some domains. The existence of a bounded density and a density which is bounded away from zero on D is also discussed.

Mean values and associated measures of δ -subharmonic functions

Neil A. Watson (2002)

Mathematica Bohemica

Let u be a δ -subharmonic function with associated measure μ , and let v be a superharmonic function with associated measure ν , on an open set E . For any closed ball B ( x , r ) , of centre x and radius r , contained in E , let ( u , x , r ) denote the mean value of u over the surface of the ball. We prove that the upper and lower limits as s , t 0 with 0 < s < t of the quotient ( ( u , x , s ) - ( u , x , t ) ) / ( ( v , x , s ) - ( v , x , t ) ) , lie between the upper and lower limits as r 0 + of the quotient μ ( B ( x , r ) ) / ν ( B ( x , r ) ) . This enables us to use some well-known measure-theoretic results to prove new variants and generalizations...

Multiply superharmonic functions

Kohur Gowrisankaran (1975)

Annales de l'institut Fourier

Some results concerning the multiply superharmonic functions and the boundary behaviour are given and some problems involving these notions are described.

Currently displaying 1 – 11 of 11

Page 1