Loading [MathJax]/extensions/MathZoom.js
We give several extensions to unbounded domains of the following classical theorem of H. Cartan: A biholomorphism between two bounded complete circular domains of Cn which fixes the origin is a linear map. In our paper, pseudo-convexity plays a main role. Some precise study is done for the case of dimension two and the case where one of the domains is Cn.
Let D be an open subset of a two-dimensional Stein manifold S. Then D is Stein if and only if every holomorphic line bundle L on D is the line bundle associated to some (not necessarily effective) Cartier divisor 𝔡 on D.
We first establish the equivalence between hyperconvexity of a fat bounded Reinhardt domain and the existence of a Stein neighbourhood basis of its closure. Next, we give a necessary and sufficient condition on a bounded Reinhardt domain D so that every holomorphic mapping from the punctured disk into D can be extended holomorphically to a map from Δ into D.
A bounded open set with boundary of class C¹ which is locally weakly lineally convex is weakly lineally convex, but, as shown by Yuriĭ Zelinskiĭ, this is not true for unbounded domains. The purpose here is to construct explicit examples, Hartogs domains, showing this. Their boundary can have regularity or .
Obstructions to constructing smoothly bounded domains with certain homogeneity properties will be discussed.
Currently displaying 1 –
5 of
5