Non-solvability of the tangential ∂̅-system in manifolds with constant Levi rank
Let M be a real-analytic submanifold of whose “microlocal” Levi form has constant rank in a neighborhood of a prescribed conormal. Then local non-solvability of the tangential ∂̅-system is proved for forms of degrees , (and 0). This phenomenon is known in the literature as “absence of the Poincaré Lemma” and was already proved in case the Levi form is non-degenerate (i.e. ). We owe its proof to [2] and [1] in the case of a hypersurface and of a higher-codimensional submanifold respectively....