Page 1

Displaying 1 – 6 of 6

Showing per page

Algorithms for Evaluation of the Wright Function for the Real Arguments’ Values

Luchko, Yury (2008)

Fractional Calculus and Applied Analysis

2000 Math. Subject Classification: 33E12, 65D20, 33F05, 30E15The paper deals with analysis of several techniques and methods for the numerical evaluation of the Wright function. Even if the focus is mainly on the real arguments’ values, the methods introduced here can be used in the complex plane, too. The approaches presented in the paper include integral representations of the Wright function, its asymptotic expansions and summation of series. Because the Wright function depends on two parameters ...

An accurate approximation of zeta-generalized-Euler-constant functions

Vito Lampret (2010)

Open Mathematics

Zeta-generalized-Euler-constant functions, γ s : = k = 1 1 k s - k k + 1 d x x s and γ ˜ s : = k = 1 - 1 k + 1 1 k s - k k + 1 d x x s defined on the closed interval [0, ∞), where γ(1) is the Euler-Mascheroni constant and γ ˜ (1) = ln 4 π , are studied and estimated with high accuracy.

Approximating real Pochhammer products: a comparison with powers

Vito Lampret (2009)

Open Mathematics

Accurate estimates of real Pochhammer products, lower (falling) and upper (rising), are presented. Double inequalities comparing the Pochhammer products with powers are given. Several examples showing how to use the established approximations are stated.

Currently displaying 1 – 6 of 6

Page 1