A Lyapunov function for pullback attractors of nonautonomous differential equations.
In the paper [CEGHM] a polynomial counterexample to the Markus-Yamabe Conjecture and to the discrete Markus-Yamabe Question in dimension n ≥ 3 are given. In the present paper we explain a way for obtaining a family of polynomial counterexamples containing the above ones. Finally we study the global dynamics of the examples given in [CEGHM].
The following problem of Markus and Yamabe is answered affirmatively: Let f be a local diffeomorphism of the euclidean plane whose jacobian matrix has negative trace everywhere. If f(0) = 0, is it true that 0 is a global attractor of the ODE dx/dt = f(x)? An old result of Olech states that this is equivalent to the question if such an f is injective. Here the problem is treated in the latter form by means of an investigation of the behaviour of f near infinity.
In this paper we summarize an abstract approach to inertial manifolds for nonautonomous dynamical systems. Our result on the existence of inertial manifolds requires only two geometrical assumptions, called cone invariance and squeezing property, and some additional technical assumptions like boundedness or smoothing properties. We apply this result to processes (two-parameter semiflows) generated by nonautonomous semilinear parabolic evolution equations.
The example is constructed of the C1-smooth skew product of interval maps possessing the one-dimensional ramified continuum (containing no arcs homeomorphic to the circle) with an infinite set of ramification points as the global attractor.
We study the structure of a differentiable autonomous system on the plane with non-positive divergence outside a bounded set. It is shown that under certain conditions such a system has a global attractor. The main result here can be seen as an improvement of the results of Olech and Meisters in [7,9] concerning the global asymptotic stability conjecture of Markus and Yamabe and the Jacobian Conjecture.
A classical result on the existence of global attractors for gradient systems is extended to the case of a semigroup S(t) lacking strong continuity, but satisfying the weaker property of being a closed map for every fixed t ≥ 0.
A necessary and sufficient condition is given for the carrying simplex of a dissipative totally competitive system of three ordinary differential equations to have a peak singularity at an axial equilibrium. For systems of Lotka-Volterra type that result translates into a simple condition on the coefficients.