Existence and uniqueness of solutions for a class of infinite-horizon systems derived from optimal control.
We prove two existence results on abstract differential equations of the type and we give some applications of them to partial differential equations.
We consider a nonlinear evolution inclusion defined in the abstract framework of an evolution triple of spaces and we look for extremal periodic solutions. The nonlinear operator is only pseudomonotone coercive. Our approach is based on techniques of multivalued analysis and on the theory of operators of monotone-type. An example of a parabolic distributed parameter system is also presented.
This paper discusses the existence of mild solutions for a class of semilinear fractional evolution equations with nonlocal initial conditions in an arbitrary Banach space. We assume that the linear part generates an equicontinuous semigroup, and the nonlinear part satisfies noncompactness measure conditions and appropriate growth conditions. An example to illustrate the applications of the abstract result is also given.
The aim of this paper is to give an existence theorem for a semilinear equation of evolution in the case when the generator of semigroup of operators depends on time parameter. The paper is a generalization of [2]. Basing on the notion of a measure of noncompactness in Banach space, we prove the existence of mild solutions of the equation considered. Additionally, the applicability of the results obtained to control theory is also shown. The main theorem of the paper allows to characterize the set...
In this paper we investigate the existence of mild solutions on an unbounded real interval to first order initial value problems for a class of differential inclusions in Banach spaces. We shall make use of a theorem of Ma, which is an extension to multivalued maps on locally convex topological spaces of Schaefer's theorem.
In this paper we investigate the existence of mild solutions defined on a semiinfinite interval for initial value problems for a differential equation with a nonlocal condition. The results is based on the Schauder-Tychonoff fixed point theorem and rely on a priori bounds on solutions.
In this paper we deal with the boundary value problem in the Hilbert space. Existence of a solutions is proved by using the method of lower and upper solutions. It is not necessary to suppose that the homogeneous problem has only the trivial solution. We use some results from functional analysis, especially the fixed-point theorem in the Banach space with a cone (Theorem 4.1, [5]).
In this paper we examine nonlinear hyperbolic inclusions in Banach spaces. With the aid of a compactness condition involving the ball measure of noncompactness we prove two existence theorems. The first for problems with convex valued orientor fields and the second for problems with nonconvex valued ones.
In this paper we examine nonlinear integrodifferential inclusions defined in a separable Banach space. Using a compactness type hypothesis involving the ball measure of noncompactness, we establish two existence results. One involving convex-valued orientor fields and the other nonconvex valued ones.