A class of second-order evolution equations with double characteristics
Page 1 Next
Antonio Gilioli (1976)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Ray Redheffer, Wolfgang Walter (1974)
Mathematische Annalen
W.N. Everitt, M. Giertz (1973)
Mathematische Annalen
Olga Hadžić, Đura Paunić (1976)
Publications de l'Institut Mathématique
Nicholas Katz (1972)
Inventiones mathematicae
Vladimír Lovicar (1975)
Časopis pro pěstování matematiky
Werner Rheinboldt (1978)
Banach Center Publications
M. A. Malik (1976)
Rendiconti del Seminario Matematico della Università di Padova
S. Zaidman (1976)
Rendiconti del Seminario Matematico della Università di Padova
Dragomir Z. Djokovic (1975)
Mathematische Zeitschrift
Terry Lyons, Nicolas Victoir (2007)
Annales de l'I.H.P. Analyse non linéaire
Jindřich Nečas (1974)
Czechoslovak Mathematical Journal
Jozef Kačur (1975)
Matematický časopis
Hansgeorg Jeggle, Rolf D. Grigorieff (1973)
Manuscripta mathematica
Laurent Gruson, Marius van der Put (1974)
Mémoires de la Société Mathématique de France
N. U. Ahmed (1995)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
In this note we present a result on compactness in certain Banach spaces of vector valued functions. We demonstrate an application of this result to the questions of existence of solutions of nonlinear differential inclusions on a Banach space.
Robert M. Kauffman (1972)
Journal für die reine und angewandte Mathematik
Philippe Michel (1977)
Bulletin de la Société Mathématique de France
Michel Artola (1970)
Rendiconti del Seminario Matematico della Università di Padova
Jacek Tabor (2002)
Mathematica Bohemica
We give a meaning to derivative of a function , where is a complete metric space. This enables us to investigate differential equations in a metric space. One can prove in particular Gronwall’s Lemma, Peano and Picard Existence Theorems, Lyapunov Theorem or Nagumo Theorem in metric spaces. The main idea is to define the tangent space of . Let , be continuous at zero. Then by the definition and are in the same equivalence class if they are tangent at zero, that is if By we denote...
Page 1 Next