An extension theorem to rough paths
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 5, page 835-847
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLyons, Terry, and Victoir, Nicolas. "An extension theorem to rough paths." Annales de l'I.H.P. Analyse non linéaire 24.5 (2007): 835-847. <http://eudml.org/doc/78762>.
@article{Lyons2007,
author = {Lyons, Terry, Victoir, Nicolas},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {rough paths; differential equations; -variation; continuity},
language = {eng},
number = {5},
pages = {835-847},
publisher = {Elsevier},
title = {An extension theorem to rough paths},
url = {http://eudml.org/doc/78762},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Lyons, Terry
AU - Victoir, Nicolas
TI - An extension theorem to rough paths
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 5
SP - 835
EP - 847
LA - eng
KW - rough paths; differential equations; -variation; continuity
UR - http://eudml.org/doc/78762
ER -
References
top- [1] Bass R.F., Hambly B.M., Lyons T.J., Extending the Wong–Zakai theorem to reversible Markov processes, J. Eur. Math. Soc.4 (2002) 237-269. Zbl1010.60070
- [2] Capitaine M., Donati-Martin C., The Lévy area process for the free Brownian motion, J. Funct. Anal.179 (1) (2001) 153-169. Zbl0979.60044MR1807256
- [3] Coutin L., Qian Z., Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields122 (1) (2002) 108-140. Zbl1047.60029MR1883719
- [4] Doss H., Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré13 (1977) 99-125. Zbl0359.60087MR451404
- [5] Folland G.B., Stein E.M., Hardy spaces on homogeneous groups, Math. Notes28 (1982). Zbl0508.42025MR657581
- [6] P. Friz, N. Victoir, On the notion of geometric rough paths, preprint, 2004. Zbl1108.34052
- [7] Gromov M., Carnot–Caratheodory spaces seen from within, in: Bellaiche A., Risler J.-J. (Eds.), Sub-Riemannian Geometry, Progress in Mathematics, vol. 144, Birkhäuser, 1996, pp. 79-323. Zbl0864.53025
- [8] Hambly B.M., Lyons T.J., Stochastic area for Brownian motion on the Sierpinski gasket, Ann. Probab.26 (1) (1998) 132-148. Zbl0936.60073MR1617044
- [9] Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, vol. 113, second ed., Springer-Verlag, New York, 1991. Zbl0734.60060MR1121940
- [10] Ledoux M., Lyons T., Qian Z., Lévy area of Wiener processes in Banach spaces, Ann. Probab.30 (2) (2002) 546-578. Zbl1016.60071MR1905851
- [11] Lejay A., Introduction to Rough Paths, Séminaire de probabilités, Lecture Notes in Mathematics, vol. XXXVII, 2003. Zbl1041.60051MR2053040
- [12] Lyons T., Differential equations driven by rough signals, Rev. Mat. Iberoamericana14 (2) (1998) 215-310. Zbl0923.34056MR1654527
- [13] Lyons T., Qian Z., System Control and Rough Paths, Oxford University Press, 2002. Zbl1029.93001MR2036784
- [14] Reutenauer C., Free Lie Algebras, London Mathematical Society Monographs (N.S.), vol. 7, Oxford Science Publications, 1993. Zbl0798.17001MR1231799
- [15] Serre J.P., Lie Algebras and Lie Groups, Lecture Notes in Mathematics, vol. 1500, 1992. Zbl0742.17008MR1176100
- [16] Sussman H.J., On the gap between deterministic and stochastic ordinary differential equations, Ann. Probab.6 (1978) 19-41. Zbl0391.60056MR461664
- [17] Varadarajan V.S., Lie Groups, Lie Algebras, and their Representations, Graduate Texts in Mathematics, vol. 102, 1984. Zbl0955.22500MR746308
- [18] N.B. Victoir, Levy area for the free Brownian motion: existence and non-existence, J. Funct. Anal., in press. Zbl1062.46055
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.