Existence of periodic solutions for -Laplacian equations on time scales.
In the paper, we prove the existence of solutions and Carathéodory’s type solutions of the dynamic Cauchy problem , t ∈ T, x(0) = x₀, where T denotes an unbounded time scale (a nonempty closed subset of R and such that there exists a sequence (xₙ) in T and xₙ → ∞) and f is continuous or satisfies Carathéodory’s conditions and some conditions expressed in terms of measures of noncompactness. The Sadovskii fixed point theorem and Ambrosetti’s lemma are used to prove the main result. The results presented...