Multiple positive symmetric solutions to -Laplacian dynamic equations on time scales.
In this research we establish necessary and sufficient conditions for the stability of the zero solution of scalar Volterra integro-dynamic equation on general time scales. Our approach is based on the construction of suitable Lyapunov functionals. We will compare our findings with known results and provides application to quantum calculus.
We study the existence and nonexistence of nonoscillatory solutions of a two-dimensional systemof first-order dynamic equations on time scales. Our approach is based on the Knaster and Schauder fixed point theorems and some certain integral conditions. Examples are given to illustrate some of our main results.
We prove some new Opial type inequalities on time scales and employ them to prove several results related to the spacing between consecutive zeros of a solution or between a zero of a solution and a zero of its derivative for second order dynamic equations on time scales. We also apply these inequalities to obtain a lower bound for the smallest eigenvalue of a Sturm-Liouville eigenvalue problem on time scales. The results contain as special cases some results obtained for second order differential...