Page 1

Displaying 1 – 12 of 12

Showing per page

On a nonlocal problem for a confined plasma in a Tokamak

Weilin Zou, Fengquan Li, Boqiang Lv (2013)

Applications of Mathematics

The paper deals with a nonlocal problem related to the equilibrium of a confined plasma in a Tokamak machine. This problem involves terms u * ' ( | u > u ( x ) | ) and | u > u ( x ) | , which are neither local, nor continuous, nor monotone. By using the Galerkin approximate method and establishing some properties of the decreasing rearrangement, we prove the existence of solutions to such problem.

On Jeffreys model of heat conduction

Maksymilian Dryja, Krzysztof Moszyński (2001)

Applicationes Mathematicae

The Jeffreys model of heat conduction is a system of two partial differential equations of mixed hyperbolic and parabolic character. The analysis of an initial-boundary value problem for this system is given. Existence and uniqueness of a weak solution of the problem under very weak regularity assumptions on the data is proved. A finite difference approximation of this problem is discussed as well. Stability and convergence of the discrete problem are proved.

On the linear force-free fields in bounded and unbounded three-dimensional domains

Tahar-Zamène Boulmezaoud, Yvon Maday, Tahar Amari (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Linear Force-free (or Beltrami) fields are three-components divergence-free fields solutions of the equation curlB = αB, where α is a real number. Such fields appear in many branches of physics like astrophysics, fluid mechanics, electromagnetics and plasma physics. In this paper, we deal with some related boundary value problems in multiply-connected bounded domains, in half-cylindrical domains and in exterior domains.

Currently displaying 1 – 12 of 12

Page 1