On a nonlocal problem for a confined plasma in a Tokamak

Weilin Zou; Fengquan Li; Boqiang Lv

Applications of Mathematics (2013)

  • Volume: 58, Issue: 6, page 609-642
  • ISSN: 0862-7940

Abstract

top
The paper deals with a nonlocal problem related to the equilibrium of a confined plasma in a Tokamak machine. This problem involves terms u * ' ( | u > u ( x ) | ) and | u > u ( x ) | , which are neither local, nor continuous, nor monotone. By using the Galerkin approximate method and establishing some properties of the decreasing rearrangement, we prove the existence of solutions to such problem.

How to cite

top

Zou, Weilin, Li, Fengquan, and Lv, Boqiang. "On a nonlocal problem for a confined plasma in a Tokamak." Applications of Mathematics 58.6 (2013): 609-642. <http://eudml.org/doc/260658>.

@article{Zou2013,
abstract = {The paper deals with a nonlocal problem related to the equilibrium of a confined plasma in a Tokamak machine. This problem involves terms $u^\{\prime \}_\{\ast \}(|u>u(x)|)$ and $|u>u(x)|$, which are neither local, nor continuous, nor monotone. By using the Galerkin approximate method and establishing some properties of the decreasing rearrangement, we prove the existence of solutions to such problem.},
author = {Zou, Weilin, Li, Fengquan, Lv, Boqiang},
journal = {Applications of Mathematics},
keywords = {nonlinear elliptic equation; relative rearrangement; Tokamak; decreasing rearrangement; plasma physics; nonlinear elliptic equation; decreasing rearrangement; relative rearrangement; Galerkin method; tokamak; plasma physics},
language = {eng},
number = {6},
pages = {609-642},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a nonlocal problem for a confined plasma in a Tokamak},
url = {http://eudml.org/doc/260658},
volume = {58},
year = {2013},
}

TY - JOUR
AU - Zou, Weilin
AU - Li, Fengquan
AU - Lv, Boqiang
TI - On a nonlocal problem for a confined plasma in a Tokamak
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 6
SP - 609
EP - 642
AB - The paper deals with a nonlocal problem related to the equilibrium of a confined plasma in a Tokamak machine. This problem involves terms $u^{\prime }_{\ast }(|u>u(x)|)$ and $|u>u(x)|$, which are neither local, nor continuous, nor monotone. By using the Galerkin approximate method and establishing some properties of the decreasing rearrangement, we prove the existence of solutions to such problem.
LA - eng
KW - nonlinear elliptic equation; relative rearrangement; Tokamak; decreasing rearrangement; plasma physics; nonlinear elliptic equation; decreasing rearrangement; relative rearrangement; Galerkin method; tokamak; plasma physics
UR - http://eudml.org/doc/260658
ER -

References

top
  1. Jr., F. J. Almgren, Lieb, E. H., 10.1090/S0894-0347-1989-1002633-4, J. Am. Math. Soc. 2 (1989), 683-773. (1989) Zbl0688.46014MR1002633DOI10.1090/S0894-0347-1989-1002633-4
  2. Berestycki, H., Brézis, H., 10.1016/0362-546X(80)90083-8, Nonlinear Anal., Theory Methods Appl. 4 (1980), 415-436. (1980) Zbl0437.35032MR0574364DOI10.1016/0362-546X(80)90083-8
  3. Blum, J., Numerical Simulation and Optimal Control in Plasma Physics. With Applications to Tokamaks. Wiley/Gauthier-Villars Series in Modern Applied Mathematics, Wiley Chichester (1989). (1989) MR0996236
  4. Boccardo, L., León, S. Segura de, Trombetti, C., 10.1016/S0021-7824(01)01211-9, J. Math. Pures Appl. 80 (2001), 919-940. (2001) MR1865381DOI10.1016/S0021-7824(01)01211-9
  5. Courant, R., Hilbert, D., Methods of Mathematical Physics Vol. I. Translated and revised from the German original. First English ed, Interscience Publishers New York (1953). (1953) Zbl0051.28802MR0065391
  6. Díaz, J. I., Galiano, G., Padial, J. F., 10.1007/s002459900098, Appl. Math. Optimization 39 (1999), 61-73. (1999) Zbl0923.35056MR1654558DOI10.1007/s002459900098
  7. Díaz, J. I., Lerena, M. B., Padial, J. F., Rakotoson, J. M., 10.1016/j.jde.2003.07.015, J. Differ. Equations 198 (2004), 321-355. (2004) Zbl1050.35151MR2038584DOI10.1016/j.jde.2003.07.015
  8. Díaz, J. I., Padial, J. F., Rakotoson, J. M., Mathematical treatment of the magnetic confinement in a current carrying stellarator, Nonlinear Anal., Theory Methods Appl. 34 (1998), 857-887. (1998) Zbl0946.35119MR1636600
  9. Díaz, J. I., Rakotoson, J. M., 10.1007/BF00376255, Arch. Ration. Mech. Anal. 134 (1996), 53-95. (1996) Zbl0863.76092MR1392309DOI10.1007/BF00376255
  10. Ferone, A., Jalal, M., Rakotoson, J. M., Volpicelli, R., A topological approach for generalized nonlocal models for a confined plasma in a tokamak, Commun. Appl. Anal. 5 (2001), 159-181. (2001) Zbl1084.35512MR1844189
  11. Ferone, A., Jalal, M., Rakotoson, J. M., Volpicelli, R., 10.1016/S0893-9659(98)00124-4, Appl. Math. Lett. 12 (1999), 43-46. (1999) Zbl0951.76099MR1663417DOI10.1016/S0893-9659(98)00124-4
  12. Fiorenza, A., Rakotoson, J. M., Zitouni, L., 10.1512/iumj.2009.58.3580, Indiana Univ. Math. J. 58 (2009), 1127-1150. (2009) Zbl1178.46026MR2541361DOI10.1512/iumj.2009.58.3580
  13. Gourgeon, H., Mossino, J., 10.5802/aif.770, Ann. Inst. Fourier 29 (1979), 127-141 French. (1979) Zbl0405.35070MR0558592DOI10.5802/aif.770
  14. Grad, H., Hu, P. N., Stevens, D. C., 10.1073/pnas.72.10.3789, Proc. Nat. Acad. Sci. USA 72 (1975), 3789-3793. (1975) DOI10.1073/pnas.72.10.3789
  15. Henrot, A., Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics, Birkhäuser Basel (2006). (2006) MR2251558
  16. Lieb, E. H., Loss, M., Analysis. 2nd ed. Graduate Studies in Mathematics 14, American Mathematical Society Providence (2001). (2001) MR1817225
  17. Mercier, C., The Magnetohydrodynamic Approach to the Problem of a Plasma Confinement in Closed Magnetic Configurations, EURATOM-CEA, Comm. of the European Communities Luxembourg (1974). (1974) 
  18. Mossino, J., 10.1080/00036818208839390, Appl. Anal. 13 (1982), 185-207. (1982) Zbl0478.35018MR0663773DOI10.1080/00036818208839390
  19. Mossino, J., 10.1007/BF02760826, Isr. J. Math. 30 (1978), 14-50 French. (1978) Zbl0399.35047MR0508250DOI10.1007/BF02760826
  20. Mossino, J., Inégalités isopérimétriques et applications en physique. Travaux en Cours, Hermann Paris (1984), French. (1984) MR0733257
  21. Mossino, J., 10.1016/0022-0396(79)90021-4, J. Differ. Equations 34 (1979), 114-138. (1979) Zbl0406.35027MR0549587DOI10.1016/0022-0396(79)90021-4
  22. Mossino, J., Temam, R., 10.1215/S0012-7094-81-04827-4, Duke Math. J. 48 (1981), 475-495. (1981) Zbl0476.35031MR0630581DOI10.1215/S0012-7094-81-04827-4
  23. Mossino, J., Temam, R., Free boundary problems in plasma physics: review of results and new developments, Free Boundary Problems, Theory and Applications Vol. II. Proc. interdisc. Symp., Montecatini/Italy 1981, Res. Notes Math. 79 A. Fasano Pitman (1983), 672-681. (1983) Zbl0512.76126
  24. Rakotoson, J. M., 10.1080/03605308708820505, Commun. Partial Differ. Equations 12 (1987), 633-676. (1987) Zbl0627.47035MR0879354DOI10.1080/03605308708820505
  25. Rakotoson, J. M., Galerkin approximation, strong continuity of the relative rearrangement map and application to plasma physics equations, Differ. Integral Equ. 12 (1999), 67-81. (1999) Zbl1005.76097MR1668537
  26. Rakotoson, J. M., 10.1016/j.na.2006.03.032, Nonlinear Anal., Theory Methods Appl. 66 (2007), 2470-2499. (2007) Zbl1130.46014MR2312600DOI10.1016/j.na.2006.03.032
  27. Rakotoson, J. M., 10.1007/978-3-540-69118-1, Mathématiques & Applications 64 Springer, Berlin (2008), French. (2008) Zbl1170.35036MR2455723DOI10.1007/978-3-540-69118-1
  28. Rakotoson, J. M., 10.1016/0362-546X(95)93090-Q, Nonlinear Anal., Theory Methods Appl. 24 (1995), 493-507. (1995) Zbl0830.35036MR1315691DOI10.1016/0362-546X(95)93090-Q
  29. Rakotoson, J. M., 10.1007/BF02293489, Acta Appl. Math. 4 (1985), 1-14 French. (1985) Zbl0586.35091MR0791260DOI10.1007/BF02293489
  30. Rakotoson, J. M., Seoane, M. L., 10.1051/m2an:2000152, M2AN, Math. Model. Numer. Anal. 34 (2000), 477-499. (2000) Zbl0963.76052MR1765671DOI10.1051/m2an:2000152
  31. Rakotoson, J. M., Temam, R., 10.1007/BF00375089, Arch. Ration. Mech. Anal. 109 (1990), 213-238. (1990) Zbl0735.49039MR1025171DOI10.1007/BF00375089
  32. Stampacchia, G., 10.5802/aif.204, Ann. Inst. Fourier 15 (1965), 189-257 French. (1965) Zbl0151.15401MR0192177DOI10.5802/aif.204
  33. Temam, R., 10.1007/BF00281469, Arch. Ration. Mech. Anal. 60 (1975), 51-73. (1975) Zbl0328.35069MR0412637DOI10.1007/BF00281469
  34. Temam, R., Monotone rearrangement of a function and the Grad-Mercier equation of plasma physics. Recent methods in non-linear analysis, Proc. Int. Meet., Rome 1978, Pitagora Bologna 83-98 (1979). (1979) MR0533163
  35. Temam, R., 10.1080/03605307708820039, Commun. Partial Differ. Equations 2 (1977), 563-585. (1977) Zbl0355.35023MR0602544DOI10.1080/03605307708820039
  36. Trombetti, C., 10.1023/A:1021884903872, Potential Anal. 18 (2003), 391-404. (2003) Zbl1040.35010MR1953268DOI10.1023/A:1021884903872
  37. Zou, W., Li, F., Lv, B., On a nonlocal elliptic problem arising in the confinement of a plasma in a current carrying stellarator, Mathematical Methods in the Applied Sciences 36 (2013), 2128-2144. (2013) Zbl1276.35146MR3124782

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.