A blow up condition for a nonautonomous semilinear system.
We consider the equation , where is a first order pseudo-differential operator with real symbol . Under a suitable convexity assumption on we find the decay properties for . These can be applied to the linear Maxwell system in anisotropic media and to the nonlinear Cauchy Problem , . If is a smooth function which satisfies near , and is small in suitably Sobolev norm, we prove global existence theorems provided is greater than a critical exponent.
Mathematics Subject Classification: 35CXX, 26A33, 35S10The well known Duhamel principle allows to reduce the Cauchy problem for linear inhomogeneous partial differential equations to the Cauchy problem for corresponding homogeneous equations. In the paper one of the possible generalizations of the classical Duhamel principle to the time-fractional pseudo-differential equations is established.* This work partially supported by NIH grant P20 GMO67594.
The analysis of dissipative transport equations within the framework of open quantum systems with Fokker-Planck-type scattering is carried out from the perspective of a Wigner function approach. In particular, the well-posedness of the self-consistent whole-space problem in 3D is analyzed: existence of solutions, uniqueness and asymptotic behavior in time, where we adopt the viewpoint of mild solutions in this paper. Also, the admissibility of a density matrix formulation in Lindblad form with Fokker-Planck...