The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Numerical Approximation of a Fractional-In-Space Diffusion Equation (II) – with Nonhomogeneous Boundary Conditions

Ilic, M., Liu, F., Turner, I., Anh, V. (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33 (primary), 35S15In this paper, a space fractional diffusion equation (SFDE) with nonhomogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the...

Numerical Approximation of a Fractional-In-Space Diffusion Equation, I

Ilic, M., Liu, F., Turner, I., Anh, V. (2005)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33 (primary), 35S15 (secondary)This paper provides a new method and corresponding numerical schemes to approximate a fractional-in-space diffusion equation on a bounded domain under boundary conditions of the Dirichlet, Neumann or Robin type. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix...

Currently displaying 1 – 2 of 2

Page 1