On analytic flows on the torus which are disjoint from systems of probabilistic origin
We describe two methods of obtaining analytic flows on the torus which are disjoint from dynamical systems induced by some classical stationary processes.
We describe two methods of obtaining analytic flows on the torus which are disjoint from dynamical systems induced by some classical stationary processes.
Special flows over some locally rigid automorphisms and under L² ceiling functions satisfying a local L² Denjoy-Koksma type inequality are considered. Such flows are proved to be disjoint (in the sense of Furstenberg) from mixing flows and (under some stronger assumption) from weakly mixing flows for which the weak closure of the set of all instances consists of indecomposable Markov operators. As applications we prove that ∙ special flows built over ergodic interval exchange...
We compare self-joining and embeddability properties. In particular, we prove that a measure preserving flow with T₁ ergodic is 2-fold quasi-simple (resp. 2-fold distally simple) if and only if T₁ is 2-fold quasi-simple (resp. 2-fold distally simple). We also show that the Furstenberg-Zimmer decomposition for a flow with T₁ ergodic with respect to any flow factor is the same for and for T₁. We give an example of a 2-fold quasi-simple flow disjoint from simple flows and whose time-one map is...
We give a positive answer to the problem of existence of smooth weakly mixing but not mixing flows on some surfaces. More precisely, on each compact connected surface whose Euler characteristic is even and negative we construct smooth weakly mixing flows which are disjoint in the sense of Furstenberg from all mixing flows and from all Gaussian flows.
A planar polygonal billiard is said to have the finite blocking property if for every pair of points in there exists a finite number of “blocking” points such that every billiard trajectory from to meets one of the ’s. Generalizing our construction of a counter-example to a theorem of Hiemer and Snurnikov, we show that the only regular polygons that have the finite blocking property are the square, the equilateral triangle and the hexagon. Then we extend this result to translation surfaces....
We extend the Killeen-Taylor study [Nonlinearity 13 (2000)] by investigating in different Banach spaces (,c₀(ℕ),c(ℕ)) the point, continuous and residual spectra of stochastic perturbations of the shift operator associated to the stochastic adding machine in base 2 and in the Fibonacci base. For the base 2, the spectra are connected to the Julia set of a quadratic map. In the Fibonacci case, the spectrum is related to the Julia set of an endomorphism of ℂ².