Partial hyperbolicity and homoclinic tangencies
We show that any diffeomorphism of a compact manifold can be approximated by diffeomorphisms exhibiting a homoclinic tangency or by diffeomorphisms having a partial hyperbolic structure.
We show that any diffeomorphism of a compact manifold can be approximated by diffeomorphisms exhibiting a homoclinic tangency or by diffeomorphisms having a partial hyperbolic structure.
We study a partially hyperbolic and topologically transitive local diffeomorphism F that is a skew-product over a horseshoe map. This system is derived from a homoclinic class and contains infinitely many hyperbolic periodic points of different indices and hence is not hyperbolic. The associated transitive invariant set Λ possesses a very rich fiber structure, it contains uncountably many trivial and uncountably many non-trivial fibers. Moreover, the spectrum of the central Lyapunov exponents of...