Reducibility of zero curvature equations.
For quasiperiodic flows of Koch type, we exploit an algebraic rigidity of an equivalence relation on flows, called projective conjugacy, to algebraically characterize the deviations from completeness of an absolute invariant of projective conjugacy, called the multiplier group, which describes the generalized symmetries of the flow. We then describe three ways by which two quasiperiodic flows with the same Koch field are projectively conjugate when their multiplier groups are identical. The first...