Page 1

Displaying 1 – 5 of 5

Showing per page

Contact hamiltonians distinguishing locally certain Goursat systems

Piotr Mormul (2000)

Banach Center Publications

For the first time in dimension 9, the Goursat distributions are not locally smoothly classified by their small growth vector at a point. As shown in [M1], in dimension 9 of the underlying manifold 93 different local behaviours are possible and four irregular pairs of them have coinciding small growth vectors. In the present paper we distinguish geometrically objects in three of those pairs. Smooth functions in three variables - contact hamiltonians in the terminology of Arnold, [A] - help to do...

Formes de contact ayant le même champ de Reeb

Aggoun, Saad (2011)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 37J55, 53D10, 53D17, 53D35.In this paper, we study contact forms on a 3-manifold having a common Reeb vector field R. The main result is that when the contact forms induce the same orientation, they are diffeomorphic.

Singularities in contact geometry

Marc Chaperon (2003)

Banach Center Publications

In the first half of the paper, we consider singularities of infinitesimal contact transformations and first order partial differential equations, the main results being related to the classical Sternberg-Chen theorem for hyperbolic germs of vector fields. The second half explains how to construct global generating phase functions for solutions of Hamilton-Jacobi equations and see what their singularities look like.

Currently displaying 1 – 5 of 5

Page 1