Studie o funkcinálních rovnicích
Let ϕ be an arbitrary bijection of . We prove that if the two-place function is subadditive in then must be a convex homeomorphism of . This is a partial converse of Mulholland’s inequality. Some new properties of subadditive bijections of are also given. We apply the above results to obtain several converses of Minkowski’s inequality.
We study the asymptotic behavior of the solutions of a scalar convolution sum-difference equation. The rate of convergence of the solution is found by determining the asymptotic behavior of the solution of the transient renewal equation.
Let T: C¹(ℝ) → C(ℝ) be an operator satisfying the “chain rule inequality” T(f∘g) ≤ (Tf)∘g⋅Tg, f,g ∈ C¹(ℝ). Imposing a weak continuity and a non-degeneracy condition on T, we determine the form of all maps T satisfying this inequality together with T(-Id)(0) < 0. They have the form Tf = ⎧ , f’ ≥ 0, ⎨ ⎩ , f’ < 0, with p > 0, H ∈ C(ℝ), A ≥ 1. For A = 1, these are just the solutions of the chain rule operator equation. To prove this, we characterize the submultiplicative, measurable functions...
We consider the dynamical system (𝒜, Tf), where 𝒜 is a class of differential real functions defined on some interval and Tf : 𝒜 → 𝒜 is an operator Tfφ := fοφ, where f is a differentiable m-modal map. If we consider functions in 𝒜 whose critical values are periodic points for f then, we show how to define and characterize a substitution system associated with (𝒜, Tf). For these substitution systems, we compute the growth rate of the...
A functional characterization of Sugeno's negations is presented and as a consequence, we study a family of non strict Archimedean t-norms whose (vertical-horizontal) sections are straight lines.
We consider a functional equation of the formG(x, phi(f1(x)), ..., phi(fr(x))) = cin the unknown function phi.We present a method to construct the general solution of this equation under suitable hypotheses on the functions Inf i fi and Supi fi.
Let X be an arbitrary Abelian group and E a Banach space. We consider the difference-operators ∆n defined by induction:(∆f)(x;y) = f(x+y) - f(x), (∆nf)(x;y1,...,yn) = (∆n-1(∆f)(.;y1)) (x;y2,...,yn)(n = 2,3,4,..., ∆1=∆, x,yi belonging to X, i = 1,2,...,n; f: X --> E).Considering the difference equation (∆nf)(x;y1,y2,...,yn) = d(x;y1,y2,...,yn) with independent variable increments, the most general solution is given explicitly if d: X x Xn --> E is a given bounded function. Also the...
We consider the summation equation, for , in the case where the map may change sign; here is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions and . Finally, as an application of the abstract existence result,...
We consider the functional equation f(z+σ) - f(z) = g(z) where σ is a complex number, f and g are entire functions of a complex variable z, with growth conditions. We prove the existence of certain types of solutions of this equation by an a priori estimate method in certain weighted L2-spaces.