The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 561 –
580 of
2648
For linear differential equations of the second order in the Jacobi form
O. Borvka introduced a notion of dispersion. Here we generalize this notion to certain classes of linear differential equations of arbitrary order. Connection with Abel’s functional equation is derived. Relations between asymptotic behaviour of solutions of these equations and distribution of zeros of their solutions are also investigated.
We investigate the distribution of zeros and shared values of the difference operator on meromorphic functions. In particular, we show that if f is a transcendental meromorphic function of finite order with a small number of poles, c is a non-zero complex constant such that for n ≥ 2, and a is a small function with respect to f, then equals a (≠ 0,∞) at infinitely many points. Uniqueness of difference polynomials with the same 1-points or fixed points is also proved.
In this paper, a discrete version of continuous non-autonomous predator-prey model with infected prey is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions for the existence and global asymptotical stability of positive periodic solution of difference equations in consideration are established. An example shows the feasibility of the main results.
Currently displaying 561 –
580 of
2648