Solutions of th-order boundary value problem for difference equation via variational method.
We obtain solutions to some conjectures about the nonlinear difference equation More precisely, we get not only a condition under which the equilibrium point of the above equation is globally asymptotically stable but also a condition under which the above equation has a unique positive cycle of prime period two. We also prove some further results.
We obtain a result on the existence of a solution with big graph of functional equations of the form g(x,𝜑(x),𝜑(f(x)))=0 and we show that it is applicable to some important equations, both linear and nonlinear, including those of Abel, Böttcher and Schröder. The graph of such a solution 𝜑 has some strange properties: it is dense and connected, has full outer measure and is topologically big.