Thermodynamic modeling, energy equipartition, and nonconservation of entropy for discrete-time dynamical systems.
In this note we derive a type of a three critical point theorem which we further apply to investigate the multiplicity of solutions to discrete anisotropic problems with two parameters.
A time-discrete 2-sex model with gestation period is analysed. It is significant that the conditions for local stability of a nontrivial steady state do not require that the expected number of female offspring per female equal unity. This is in contrast to results obtained by Curtin and MacCamy [4] and the author [10].
It is well-known that the idea of transferring boundary conditions offers a universal and, in addition, elementary means how to investigate almost all methods for solving boundary value problems for ordinary differential equations. The aim of this paper is to show that the same approach works also for discrete problems, i.e., for difference equations. Moreover, it will be found out that some results of this kind may be obtained also for some particular two-dimensional problems.