Page 1

Displaying 1 – 1 of 1

Showing per page

Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé

David Sauzin (1995)

Annales de l'institut Fourier

Henri Poincaré avait déjà remarqué que les variétés stable et instable du pendule perturbé, défini par l’hamiltonien H ( q , p , t ) = p 2 / 2 + ( - 1 + cos q ) ( 1 - μ sin ( t / ϵ ) ) , ne coïncident pas lorsque que le paramètre μ n’est pas nul, mais qu’on peut leur associer un même développement formel divergent en puissance de ϵ . Cette divergence est ici analysée au moyen de la récente théorie de la résurgence, et du calcul étranger qui permet de trouver un équivalent asymptotique de l’écart des deux variétés pour ϵ tendant vers zéro - du moins cela est-il montré...

Currently displaying 1 – 1 of 1

Page 1